

EDR/AV Evasion

WHITE PAPER

Introduction

Abbreviation

Market Trends & Challenges

Different Methods to Evade EDR Detection

Conclusion

Author Info

This whitepaper describes the importance of EDR security and gives a quick glimpse of EDR evasion techniques. The objective of this paper is to provide insights on endpoint security as an increasingly vital component of any organization's cybersecurity strategy.

Abbreviation

SI. No.	Acronyms	Full Form
1.	EDR	Endpoint Detection and Response
2	AV	Antivirus
3	IOC	Indicator of compromise

Market Trends & Challenges

EDR evasion capabilities have grown significantly in the past several years. It is easy to find many publicly available approaches for defeating EDR tools. A strong endpoint security is an increasingly vital component of any organization's cybersecurity strategy. The information available on existing EDR evasion capabilities will be explored as this can aid threat hunters in detection. Deploying an effective EDR security solution is essential to protecting enterprises/organizations from cyber threats.

Let us look at the current methods that hackers use to evade EDR detection:

Different Methods to Evade EDR Detection:

- 1. **Bloating:** Cyber attackers can evade EDR detection by increasing the file size of the malicious file as EDRs do not scan files beyond a certain file size
- 2. IOC Manipulation: Attackers also use other methods such as modifying the malicious files in a manner that it removes IOC used by security products to detect the malware
- **3.** Certificate Spoofing: Hackers also spoof code signing certificates and sign malicious files to evade EDR and security products

Shown below are some sample screenshots of the various stages of EDR evasion

1) Detection before bloating (Fig	z 1)
-----------------------------------	------------	---

Ad-Aware	() Trojan.GenericKD.62515700	AhnLab-V3	① Malware/Win.Malware-gen.R525063
ALYac	(I) Trojan.GenericKD.62515700	Antiy-AVL	Trojan/Generic.ASMalwS.5170
Arcabit	(I) Trojan.Generic.D3B9E9F4	Avast	() Win32:CrypterX-gen [Trj]
AVG	() Win32:CrypterX-gen [Trj]	Avira (no cloud)	TR/Injector.mprib
BitDefender	(I) Trojan.GenericKD.62515700	CrowdStrike Falcon	() Win/malicious_confidence_100% (W)
Cybereason	() Malicious.90de66	Cylance	() Unsafe
Cynet	() Malicious (score: 100)	Cyren	U W32/Cerber.XHPT-9103
DrWeb	() BackDoor.Siggen2.4144	Elastic	Malicious (high Confidence)
Emsisoft	(I) Trojan.GenericKD.62515700 (B)	eScan	Trojan.GenericKD.62515700
ESET-NOD32	() A Variant Of Win32/Injector.ESCG	Fortinet	W32/GenKryptlk.FSCS!tr
GData	(I) Trojan.GenericKD.62515700	Google	① Detected
Gridinsoft (no cloud)	() Ransom.Win32.Wacatac.sa	Ikarus	() Trojan-Spy
K7AntiVirus	(I) Trojan (005991d21)	Kaspersky	UDS:Trojan.Win32.Agent.a
Kingsoft	() Malware.kb.a.(kcloud)	Lionic	Trojan.Win32.Generic.41c
Malwarebytes	() Malware.Al.4278002693	MAX	() Malware (ai Score=83)
MaxSecure	() Trojan.Malware.300983.susgen	McAfee	GenericRXAA-AAI3FFFA3952204
Microsoft	() Ransom:Win32/CerberCrypt.PBIMTB	Palo Alto Networks	() Generic.ml
Panda	(I) Trj/RansomGen.A	Rising	Trojan.Generic@Al.85 (RDML:dd2hdPG
Sangfor Engine Zero	(I) Trojan.Win32.Agent.Vxhu	SecureAge	① Malicious
SentinelOne (Static ML)	() Static AI - Suspicious PE	Symantec	ML.Attribute.HighConfidence
Tencent	U Win32.Trojan.Inject.Udki	Trellix (FireEye)	() Generic.mg.3fffa3952204057b
TrendMicro-HouseCall	TROJ_GEN.R053H0CJ622	VBA32	1 TScope.Trojan.Delf

Fig 1

2) Bloating the infected file (Fig 2)

mc@mc:/tmp/ezr\$ ls -lh
total 7.0M
-rwxrwxr-x 1 mc mc 2.3M Oct 7 21:39 ezr
-rw-r--r-- 1 mc mc 4.8M Oct 7 15:05 infected
mc@mc:/tmp/ezr\$./ezr --input infected --output infected_bloated --bloat 100
mc@mc:/tmp/ezr\$ ls -lh
total 112M
-rwxrwxr-x 1 mc mc 2.3M Oct 7 21:39 ezr
-rw-r--r-- 1 mc mc 4.8M Oct 7 15:05 infected
-rwxrwxr-x 1 mc mc 105M Oct 7 21:40 infected_bloated
mc@mc:/tmp/ezr\$

Fig 2

3) After bloating (Fig 3)

Acronis (Static ML)	O Undetected	Alibaba	O Undetected
Avira (no cloud)	⊘ Undetected	Baidu	O Undetected
BitDefenderTheta	⊘ Undetected	Bkav Pro	O Undetected
ClamAV	⊘ Undetected	CMC	O Undetected
Comodo	⊘ Undetected	CrowdStrike Falcon	O Undetected
Emsisoft	⊘ Undetected	F-Secure	O Undetected
Gridinsoft (no cloud)	⊘ Undetected	Jiangmin	O Undetected
K7GW	⊘ Undetected	Kaspersky	O Undetected
Kingsoft	O Undetected	Lionic	O Undetected
Malwarebytes	O Undetected	MaxSecure	O Undetected
McAfee	O Undetected	McAfee-GW-Edition	O Undetected
Microsoft	⊘ Undetected	NANO-Antivirus	O Undetected
Palo Alto Networks	O Undetected	Panda	O Undetected
QuickHeal	⊘ Undetected	Sangfor Engine Zero	O Undetected
SecureAge	O Undetected	Sophos	O Undetected
SUPERAntiSpyware	O Undetected	Symantec	O Undetected
TACHYON	O Undetected	TEHTRIS	O Undetected
Tencent	O Undetected	Trapmine	O Undetected
TrendMicro	O Undetected	TrendMicro-HouseCall	O Undetected
VirlT	O Undetected	ViRobot	O Undetected
Webroot	O Undetected	Yandex	O Undetected
Zillya	O Undetected	ZoneAlarm by Check Point	O Undetected
Zoner	O Undetected	Avast-Mobile	🛞 Unable to process fi

Fig 3

4) Before IOC Evasion (Fig 4)

Ad-Aware	() Gen:Variant.Ransom.Hive.18	AhnLab-V3	1 Trojan/Win.Generic.C4991530
Alibaba	Trojan:Application/Redcap.1e5bc17d	ALYac	() Gen:Variant.Ransom.Hive.18
Antiy-AVL	() Trojan/Generic.ASMalwS.4D91	Arcabit	() Trojan.Ransom.Hive.18
Avast	() Win64:Trojan-gen	AVG	() Win64:Trojan-gen
Avira (no cloud)	(I) TR/Redcap.mirti	BitDefender	() Gen:Variant.Ransom.Hive.18
Comodo	(1) Malware@#395mahan0y3ht	CrowdStrike Falcon	() Win/malicious_confidence_100% (W)
Cylance	() Unsafe	Cynet	① Malicious (score: 99)
Cyren	(1) W64/Agent.ECY.gen!Eldorado	Elastic	() Malicious (high Confidence)
Emsisoft	(!) Gen:Variant.Ransom.Hive.18 (B)	eScan	() Gen:Variant.Ransom.Hive.18
ESET-NOD32	(!) A Variant Of WinGo/Agent.BE	Fortinet	() W64/Agent.BE!tr
GData	(I) Gen:Variant.Ransom.Hive.18	Google	① Detected
Ikarus	(1) Trojan.WinGo.Agent	Jiangmin	() Trojan.Generic.hhcnf
K7AntiVirus	(1) Trojan (0057dfcf1)	K7GW	() Trojan (0057dfcf1)
Kaspersky	(1) Trojan.Win32.Cobalt.eqz	Malwarebytes	() Malware.AI.4192744535
MAX	(1) Malware (ai Score=80)	MaxSecure	() Trojan.Malware.119631590.susgen
McAfee	(I) Artemis!127478CC9FEC	McAfee-GW-Edition	() Artemis!Trojan
Microsoft	(I) Trojan:Win64/MalgentIMSR	Panda	() Trj/CLA
Rising	() Trojan.Agentl8.B1E (TFE:5:JVJTXwxksfP)	Sangfor Engine Zero	() Trojan.WinGo.Agent.BE
SecureAge	① Malicious	Symantec	() Trojan.Gen.MBT
Tencent	() Win32.Trojan.Coball.Dwjk	Trellix (FireEye)	() Generic.mg.127478cc9fec34ee
TrendMicro	() TROJ_GEN.R002C0WC122	TrendMicro-HouseCall	() TROJ_GEN.R002C0WC122
VBA32		VIDRE	Gen:Variant Ransom Hive 18

Fig 4

5) Performing IOC Evasion (Fig 5)

mc@mc:/tmp/ezr\$ ls -lh
total 4.5M
-rwxrwxr-x 1 mc mc 2.3M Oct 7 21:39 ezr
-rw-r--r- 1 mc mc 2.3M Oct 7 16:35 infected
mc@mc:/tmp/ezr\$./ezr --input infected --output infected_evaded --ioc
mc@mc:/tmp/ezr\$ ls -lh
total 6.7M
-rwxrwxr-x 1 mc mc 2.3M Oct 7 21:39 ezr
-rw-r--r-- 1 mc mc 2.3M Oct 7 16:35 infected
-rwxrwxr-x 1 mc mc 2.3M Oct 7 22:10 infected_evaded

Fig 5

6) After IOC Evasion (Fig 6)

Ad-Aware	⊘ Undetected	Alibaba	O Undetected
ALYac	⊘ Undetected	Antiy-AVL	O Undetected
Arcabit	⊘ Undetected	Avast	O Undetected
AVG	⊘ Undetected	Baidu	O Undetected
BitDefender	⊘ Undetected	BitDefenderTheta	O Undetected
Bkav Pro	⊘ Undetected	ClamAV	Undetected
СМС	⊘ Undetected	Comodo	O Undetected
CrowdStrike Falcon	⊘ Undetected	Cybereason	O Undetected
Cylance	⊘ Undetected	DrWeb	O Undetected
Emsisoft	⊘ Undetected	eScan	O Undetected
F-Secure	⊘ Undetected	GData	Undetected
Gridinsoft (no cloud)	⊘ Undetected	Ikarus	O Undetected
K7AntiVirus	⊘ Undetected	K7GW	Undetected
Kingsoft	⊘ Undetected	Lionic	O Undetected
MAX	⊘ Undetected	McAfee	O Undetected
McAfee-GW-Edition	⊘ Undetected	NANO-Antivirus	O Undetected
Palo Alto Networks	⊘ Undetected	Panda	O Undetected
QuickHeal	⊘ Undetected	Sangfor Engine Zero	O Undetected
SentinelOne (Static ML)	⊘ Undetected	Sophos	O Undetected
SUPERAntiSpyware	O Undetected	Symantec	O Undetected
TACHYON	⊘ Undetected	TEHTRIS	Undetected

Fig 6

7) Faking certificate (Fig 7)

mc@mc:/tmp/ezr\$ ls -lh
total 8.2M
-rwxrwxr-x 1 mc mc 2.3M Oct 7 21:39 ezr
-rw-r--r-- 1 mc mc 4.8M Oct 7 15:05 infected
-rwxrwxrwx 1 mc mc 1.3M May 12 12:54 putty.exe
mc@mc:/tmp/ezr\$./ezr --input infected --output infected_cert --cert-file putty.exe
mc@mc:/tmp/ezr\$ ls -lh
total 13M
-rwxrwxr-x 1 mc mc 2.3M Oct 7 21:39 ezr
-rw-r--r-- 1 mc mc 4.8M Oct 7 15:05 infected
-rwxrwxr-x 1 mc mc 4.8M Oct 7 21:51 infected_cert
-rwxrwxr-x 1 mc mc 4.8M Oct 7 21:51 infected_cert
-rwxrwxr-x 1 mc mc 4.8M Oct 7 21:51 infected_cert

Fig 8

8) After certificate spoof (Fig 9)

Ad-Aware	O Undetected	Alibaba	O Undetected
ALYac	O Undetected	Arcabit	O Undetected
Baidu	O Undetected	BitDefender	Undetected
BitDefenderTheta	O Undetected	Bkav Pro	O Undetected
ClamAV	Undetected	CMC	Undetected
Comodo	O Undetected	CrowdStrike Falcon	O Undetected
Cyren	O Undetected	DrWeb	Undetected
Emsisoft	Undetected	eScan	O Undetected
F-Secure	O Undetected	GData	O Undetected
Google	O Undetected	Gridinsoft (no cloud)	O Undetected
Ikarus	Undetected	K7AntiVirus	Undetected
K7GW	 Undetected 	Kaspersky	O Undetected
Kingsoft	O Undetected	MAX	Undetected
McAfee	Undetected	McAfee-GW-Edition	O Undetected
Microsoft	Undetected	NANO-Antivirus	Undetected
Palo Alto Networks	O Undetected	Panda	O Undetected
QuickHeal	O Undetected	Sangfor Engine Zero	O Undetected
SecureAge	Undetected	SentinelOne (Static ML)	O Undetected
Sophos	O Undetected	SUPERAntiSpyware	O Undetected
Symantec	O Undetected	TACHYON	Undetected
TEHTRIS	Undetected	Tencent	Undetected
Trapmine	Undetected	Trellix (FireEye)	Undetected

Fig 9

The following images show how hackers encrypt the Payload/Shell code using XOR

9) Common AV/EDR evasion methods for XOR shellcode (Fig 10)

Fig 10

The drawback however is that common functions like memcpy, WriteProcessMemory are now detected on dynamic analysis by most AV's.

10) How the hackers encrypt the Payload/ Shell code using XOR (Fig 11)

Fig 11

11) Steps to create the same (Fig 12)

SECURITY

C)

12) Steps to execute payload from within program (Fig 13)

Fig 13

13) Next few screenshots show how an executable is converted to an embedded zip file inside JScript (Fig 14)

Fig 14

Steps to create (Fig 15)

How the JScript code works (Fig 16)

Fig 16

Conclusion

To summarize, malicious actors are taking advantage of the situation, exploiting an unprecedented opportunity to breach organizations worldwide using endpoints as the top attack vector. As a result, the endpoint security solution should be based upon best practices for protecting organizations from preventing the most imminent threats to the endpoint.

While EDR & AV solutions are effective at blocking a high percentage of cyberattacks, some will slip through or bypass these defenses entirely. These solutions should be used in conjunction with application-level controls and the larger environment should be actively monitored for omissions.

Author Info

Mr. Suriya Prakash Head-DARWIS SFS & Threat Intel API CySecurity Corp Mr. Sabari Selvan Security Architect CySecurity Corp